Oxygen evolution on perovskite-type cobaltite anodes: an assessment of materials science-related aspects

resumo

Ceramic anodes, made of perovskite-type rare-earth and strontium cobaltites substituted in both sublattices, exhibit a high electrocatalytic activity towards oxygen evolution in alkaline media. This work analyzes the relationships between cation composition, defect structure, electronic conductivity and electrochemical performance for a wide group of perovskite-like cobaltites, including Ln(1-y)A(y)CoO(3-delta) (Ln= Pr, Nd, Sm; A= Sr, Ca; y= 0-0.4), La1-x-ySrxBiyCoO3-delta (x= 0-0.6, y= 0-0.1), La0.7-xSr0.3CoO3-delta (x= 0-0.10), Sr1-xBaxCoO3-delta (x= 0.1-0.2) and SrCo1-yMyO3-delta (M=Fe, Ni, Ti, Cu; y= 0.1-0.6). The materials were prepared by the standard ceramic technique and characterized employing XRD, TGA, iodometric titration, and total conductivity measurements. A relatively high electrochemical performance in alkaline solutions was observed for (La,Sr)CoO3-based compositions with a moderate A-site deficiency. For SrCoO3-based materials, an increase in the oxygen evolution rate was found when co-substituting cobalt with several transition metal cations, such as Fe3+/4+ and Cu2+/3+. The results show that, in general, the key composition-related factors influencing electrochemical activity in alkaline media include the oxygen vacancy concentration, the average positive charge density in the crystal lattice, and possible blocking of active sites on the electrode surface.

palavras-chave

OXIDES

categoria

Materials Science

autores

Kovalevsky, AV; Sviridov, DV; Kharton, VV; Naumovich, EN; Frade, JR

nossos autores

Partilhe este projeto

Publicações similares

Usamos cookies para atividades de marketing e para lhe oferecer uma melhor experiência de navegação. Ao clicar em “Aceitar Cookies” você concorda com nossa política de cookies. Leia sobre como usamos cookies clicando em "Política de Privacidade e Cookies".