Projectos
A forma da água: a nanotermometria como ferramenta para desvendar a estrutura da água líquida e de soluções coloidais. (PTDC/NAN-PRO/3881/2020)
ParticipanteFundação para a Ciência e a Tecnologia
Nanopartículas Nanotermometria Estrutura local da água Conversão ascendente de energiaDESENVOLVIMENTO DE NANOPLATAFORMAS EFICIENTES DE AQUECIMENTO E MONITORIZAC?A?O PARA IMAGEM INTRACELLULAR E HIPERTRMIA LOCAL CONTROLADA. (NanoHeatControl)
ParticipanteFundação para a Ciência e a Tecnologia
Publicações
Engineering Eu3+/Tb3+-bearing metal-organic framework luminescent thermometers for tunable thermal performance
Virgile Trannoy, Albano N. Carneiro Neto, Carlos D. S. Brites, Luís D. Carlos, Hélène Serier-Brault
2021, Advanced Optical Materials.
>
Lanthanide Luminescence to Mimic Molecular Logic and Computing through Physical Inputs
Hernandez-Rodriguez, MA; Brites, CDS; Antorrena, G; Pinol, R; Cases, R; Perez-Garcia, L; Rodrigues, M; Plaza, JA; Torras, N; Diez, I; Millan, A; Carlos, LD
2020, ADVANCED OPTICAL MATERIALS, 8, 12.
>
Exploiting bandgap engineering to finely control dual-mode Lu-2(Ge,Si)O-5:Pr(3+)luminescence thermometers
Sojka, M; Brites, CDS; Carlos, LD; Zych, E
2020, JOURNAL OF MATERIALS CHEMISTRY C, 8, 29, 10086-10097.
ISBN:
2050-7534
>
La0.4Gd1.6Zr2O7:0.1%Pr transparent sintered ceramic - a wide-range luminescence thermometer
Trojan-Piegza, J; Brites, CDS; Ramalho, JFCB; Wang, ZJ; Zhou, GH; Wang, SW; Carlos, LD; Zych, E
2020, JOURNAL OF MATERIALS CHEMISTRY C, 8, 21, 7005-7011.
ISBN:
2050-7534
>
Simultaneous Measurement of the Emission Quantum Yield and Local Temperature: The Illustrative Example of SrF2:Yb3+/Er3+ Single Crystals
Brites, CDS; Kuznetsov, SV; Konyushkin, VA; Nakladov, AN; Fedorov, PP; Carlos, LD
2020, EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2020, 17, 1555-1561.
ISBN:
1099-0682
>
Real-Time Intracellular Temperature Imaging Using Lanthanide Bearing Polymeric Micelles
Pinol, R; Zeler, J; Brites, CDS; Gu, YY; Tellez, P; Neto, ANC; da Silva, TE; Moreno-Loshuertos, R; Fernandez-Silva, P; Gallego, AI; Martinez-Lostao, L; Martinez, A; Carlos, LD; Millan, A
2020, NANO LETTERS, 20, 9, 6466-6472.
ISBN:
1530-6992
>
Decoding a Percolation Phase Transition of Water at similar to 330 K with a Nanoparticle Ruler
Brites, CDS; Zhuang, BL; Debasu, ML; Ding, D; Qin, X; Maturi, FE; Lim, WWY; Soh, D; Rocha, J; Yi, ZG; Liu, XG; Carlos, LD
2020, JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 11, 16, 6704-6711.
>
Exploring Single-Nanoparticle Dynamics at High Temperature by Optical Tweezers
Lu, DS; Labrador-Paez, L; Ortiz-Rivero, E; Frades, P; Antoniak, MA; Wawrzynczyk, D; Nyk, M; Brites, CDS; Carlos, LD; Sole, JAG; Haro-Gonzalez, P; Jaque, D
2020, NANO LETTERS, 20, 11, 8024-8031.
ISBN:
1530-6992
>
Self-Calibrated Double Luminescent Thermometers Through Upconverting Nanoparticles
Brites, CDS; Martinez, ED; Urbano, RR; Rettori, C; Carlos, LD
2019, FRONTIERS IN CHEMISTRY, 7.
>
Lanthanide-Based Thermometers: At the Cutting-Edge of Luminescence Thermometry
Brites, CDS; Balabhadra, S; Carlos, LD
2019, ADVANCED OPTICAL MATERIALS, 7, 5.
>
Upconversion Nanocomposite Materials With Designed Thermal Response for Optoelectronic Devices
Martinez, ED; Brites, CDS; Carlos, LD; Urbano, RR; Rettori, C
2019, FRONTIERS IN CHEMISTRY, 7.
>
Electrochromic Switch Devices Mixing Small- and Large-Sized Upconverting Nanocrystals
Martinez, ED; Brites, CDS; Carlos, LD; Garcia-Flores, AF; Urbano, RR; Rettori, C
2019, ADVANCED FUNCTIONAL MATERIALS, 29, 8.
ISBN:
1616-3028
>
Thermal Properties of Lipid Bilayers Determined Using Upconversion Nanothermometry
Bastos, ARN; Brites, CDS; Rojas-Gutierrez, PA; DeWolf, C; Ferreira, RAS; Capobianco, JA; Carlos, LD
2019, ADVANCED FUNCTIONAL MATERIALS, 29, 48.
ISBN:
1616-3028
>
Bandgap Engineering and Excitation Energy Alteration to Manage Luminescence Thermometer Performance. The Case of Sr-2(Ge,Si)O-4:Pr3+
Sojka, M; Ramalho, JFCB; Brites, CDS; Fiaczyk, K; Carlos, LD; Zych, E
2019, ADVANCED OPTICAL MATERIALS, 7, 23.
>
Luminescence Thermometry on the Route of the Mobile-Based Internet of Things (IoT): How Smart QR Codes Make It Real
Ramalho, JFCB; Correia, SFH; Fu, LS; Antonio, LLF; Brites, CDS; Andre, PS; Ferreira, RAS; Carlos, LD
2019, ADVANCED SCIENCE, 6, 19.
ISBN:
2198-3844
>
Aggregation-induced heterogeneities in the emission of upconverting nanoparticles at the submicron scale unfolded by hyperspectral microscopy
Gonell, F; Botas, AMP; Brites, CDS; Amoros, P; Carlos, LD; Julian-Lopez, B; Ferreira, RAS
2019, NANOSCALE ADVANCES, 1, 7, 2537-2545.
>
Widening the Temperature Range of Luminescent Thermometers through the Intra- and Interconfigurational Transitions of Pr3+
Brites, CDS; Fiaczyk, K; Ramalho, JFCB; Sojka, M; Carlos, LD; Zych, E
2018, ADVANCED OPTICAL MATERIALS, 6, 10.
>
[INVITED] Luminescent QR codes for smart labelling and sensing
Ramalho, JFCB; Antonio, LCF; Correia, SFH; Fu, LS; Pinho, AS; Brites, CDS; Carlos, LD; Andre, PS; Ferreira, RAS
2018, OPTICS AND LASER TECHNOLOGY, 101, 304-311.
>
Upconversion thermometry: a new tool to measure the thermal resistance of nanoparticles
Savchuk, OA; Carvajal, JJ; Brites, CDS; Carlos, LD; Aguilo, M; Diaz, F
2018, NANOSCALE, 10, 14, 6602-6610.
>
Radiation-to-heat conversion efficiency in SrF2:Yb3+/Er3+ upconverting nanoparticles
Balabhadra, S; Debasu, ML; Brites, CDS; Ferreira, RAS; Carlos, LD
2018, OPTICAL MATERIALS, 83, 1-6.
>
A cost-effective quantum yield measurement setup for upconverting nanoparticles
Balabhadra, S; Debasu, ML; Brites, CDS; Ferreira, RAS; Carlos, LD
2017, JOURNAL OF LUMINESCENCE, 189, 64-70.
>
Tethering Luminescent Thermometry and Plasmonics: Light Manipulation to Assess Real-Time Thermal Flow in Nanoarchitectures
Brites, CDS; Fuertes, MC; Angelome, PC; Martinez, ED; Lima, PP; Soler-Illia, GJAA; Carlos, LD
2017, NANO LETTERS, 17, 8, 4746-4752.
>
Upconverting Nanoparticles Working As Primary Thermometers In Different Media
Balabhadra, S; Debasu, ML; Brites, CDS; Ferreira, RAS; Carlos, LD
2017, JOURNAL OF PHYSICAL CHEMISTRY C, 121, 25, 13962-13968.
>
Tuning the sensitivity of Ln(3+)-based luminescent molecular thermometers through ligand design
Brites, CDS; Lima, PP; Carlos, LD
2016, JOURNAL OF LUMINESCENCE, 169, 497-502.
>
Unveiling in Vivo Subcutaneous Thermal Dynamics by Infrared Luminescent Nanothermometers
Ximendes, EC; Santos, WQ; Rocha, U; Kagola, UK; Sanz-Rodriguez, F; Fernandez, N; Gouveia-Neto, AD; Bravo, D; Domingo, AM; del Rosal, B; Brites, CDS; Carlos, LD; Jaque, D; Jacinto, C
2016, NANO LETTERS, 16, 3, 1695-1703.
>
Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry
Brites, CDS; Xie, XJ; Debasu, ML; Qin, X; Chen, RF; Huang, W; Rocha, J; Liu, XG; Carlos, LD
2016, NATURE NANOTECHNOLOGY, 11, 10, 851-+.
>
Implementing luminescence thermometry at 1.3 mu m using (GdNd)(2)O-3 nanoparticles
Balabhadra, S; Debasu, ML; Brites, CDS; Rocha, J; Carlos, LD
2016, JOURNAL OF LUMINESCENCE, 180, 25-30.
>
Nanoplatforms for Plasmon-Induced Heating and Thermometry
Debasu, ML; Brites, CDS; Balabhadra, S; Oliveira, H; Rocha, J; Carlos, LD
2016, CHEMNANOMAT, 2, 6, 520-527.
>
A New Generation of Primary Luminescent Thermometers Based on Silicon Nanoparticles and Operating in Different Media
Botas, AMP; Brites, CDS; Wu, J; Kortshagen, U; Pereira, RN; Carlos, LD; Ferreira, RAS
2016, PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 33, 10, 740-748.
>
Cryogenic Nanothermometer Based on the MIL-103(Tb,Eu) Metal-Organic Framework
Ananias, D; Brites, CDS; Carlos, LD; Rocha, J
2016, EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 13-14, 1967-1971.
>
Implementing Thermometry on Silicon Surfaces Functionalized by Lanthanide-Doped Self-Assembled Polymer Monolayers
Rodrigues, M; Pinol, R; Antorrena, G; Brites, CDS; Silva, NJO; Murillo, JL; Cases, R; Diez, I; Palacio, F; Torras, N; Plaza, JA; Perez-Garcia, L; Carlos, LD; Millan, A
2016, ADVANCED FUNCTIONAL MATERIALS, 26, 2, 200-209.
>
Lanthanide Organic Framework Luminescent Thermometers
Rocha, J; Brites, CDS; Carlos, LD
2016, CHEMISTRY-A EUROPEAN JOURNAL, 22, 42, 14782-14795.
>
Visible-Light Excited Luminescent Thermometer Based on Single Lanthanide Organic Frameworks
Li, L; Zhu, YL; Zhou, XH; Brites, CDS; Ananias, D; Lin, Z; Paz, FAA; Rocha, J; Huang, W; Carlos, LD
2016, ADVANCED FUNCTIONAL MATERIALS, 26, 47, 8677-8684.
>
Lanthanide-Organic Framework Nanothermometers Prepared by Spray-Drying
Wang, ZP; Ananias, D; Carne-Sanchez, A; Brites, CDS; Imaz, I; Maspoch, D; Rocha, J; Carlos, LD
2015, ADVANCED FUNCTIONAL MATERIALS, 25, 19, 2824-2830.
>
Joining Time-Resolved Thermometry and Magnetic-Induced Heating in a Single Nanoparticle Unveils Intriguing Thermal Properties
Pinol, R; Brites, CDS; Bustamante, R; Martinez, A; Silva, NJO; Murillo, JL; Cases, R; Carrey, J; Estepa, C; Sosa, C; Palacio, F; Carlos, LD; Millan, A
2015, ACS NANO, 9, 3, 3134-3142.
>
A cryogenic luminescent ratiometric thermometer based on a lanthanide phosphonate dimer
Ren, M; Brites, CDS; Bao, SS; Ferreira, RAS; Zheng, LM; Carlos, LD
2015, JOURNAL OF MATERIALS CHEMISTRY C, 3, 33, 8480-8484.
>
Boosting the sensitivity of Nd3+-based luminescent nanothermometers
Balabhadra, S; Debasu, ML; Brites, CDS; Nunes, LAO; Malta, OL; Rocha, J; Bettinelli, M; Carlos, LD
2015, NANOSCALE, 7, 41, 17261-17267.
>
White OLED based on a temperature sensitive Eu3+/Tb3+ beta-diketonate complex
Lima, PP; Paz, FAA; Brites, CDS; Quirino, WG; Legnani, C; Silva, MCE; Ferreira, RAS; Junior, SA; Malta, OL; Cremona, M; Carlos, LD
2014, ORGANIC ELECTRONICS, 15, 3, 798-808.
>
Thermometry at the nanoscale using lanthanide-containing organic-inorganic hybrid materials
Brites, CDS; Lima, PP; Silva, NJO; Millan, A; Amaral, VS; Palacio, F; Carlos, LD
2013, JOURNAL OF LUMINESCENCE, 133, 230-232.
>
Ratiometric highly sensitive luminescent nanothermometers working in the room temperature range. Applications to heat propagation in nanofluids
Brites, CDS; Lima, PP; Silva, NJO; Millan, A; Amaral, VS; Palacio, F; Carlos, LD
2013, NANOSCALE, 5, 16, 7572-7580.
>
Ratiometric Nanothermometer Based on an Emissive Ln(3+)-Organic Framework
Cadiau, A; Brites, CDS; Costa, PMFJ; Ferreira, RAS; Rocha, J; Carlos, LD
2013, ACS NANO, 7, 8, 7213-7218.
>
Photonic-on-a-chip: a thermal actuated Mach-Zehnder interferometer and a molecular thermometer based on a single di-ureasil organic-inorganic hybrid
Ferreira, RAS; Brites, CDS; Vicente, CMS; Lima, PP; Bastos, ARN; Marques, PG; Hiltunen, M; Carlos, LD; Andre, PS
2013, LASER & PHOTONICS REVIEWS, 7, 6, 1027-1035.
>
Organic-Inorganic Eu3+/Tb3+ codoped hybrid films for temperature mapping in integrated circuits
Brites, CDS; Lima, PP; Silva, NJO; Millan, A; Amaral, VS; Palacio, F; Carlos, LD
2013, FRONTIERS IN CHEMISTRY, 1.
>
Metal-Free Highly Luminescent Silica Nanoparticles
Brites, CDS; Freitas, VT; Ferreira, RAS; Millan, A; Palacio, F; Carlos, LD
2012, LANGMUIR, 28, 21, 8190-8196.
>
Thermometry at the nanoscale
Brites, CDS; Lima, PP; Silva, NJO; Millan, A; Amaral, VS; Palacio, F; Carlos, LD
2012, NANOSCALE, 4, 16, 4799-4829.
>
Lanthanide-based luminescent molecular thermometers
Brites, CDS; Lima, PP; Silva, NJO; Millan, A; Amaral, VS; Palacio, F; Carlos, LD
2011, NEW JOURNAL OF CHEMISTRY, 35, 6, 1177-1183.
>
A Luminescent Molecular Thermometer for Long-Term Absolute Temperature Measurements at the Nanoscale
Brites, CDS; Lima, PP; Silva, NJO; Millan, A; Amaral, VS; Palacio, F; Carlos, LD
2010, ADVANCED MATERIALS, 22, 40, 4499-4504.
>
Photoluminescence of Eu(III)-doped lamellar bridged silsesquioxanes self-templated through a hydrogen bonding array
Nobre, SS; Brites, CDS; Ferreira, RAS; Bermudez, VD; Carcel, C; Moreau, JJE; Rocha, J; Man, MWC; Carlos, LD
2008, JOURNAL OF MATERIALS CHEMISTRY, 18, 35, 4172-4182.
>
Nanoscale Thermometry for Hyperthermia Applications

In Raluca Maria Fratila, Jesús Martínez De La Fuente (Eds.), Nanomaterials for Magnetic and Optical Hyperthermia Applications
Rafael Piñol, Carlos D.S. Brites, Nuno J. Silva, Luis D. Carlos, Angel Millán
2019, 139-172, Elsevier.
ISBN:
978-0-12-813928-8
>
Chapter 281 – Lanthanides in Luminescent Thermometry

In Karl A. Gschneidner, Jean-Claude BŸnzli, Vitalij Pecharsky (Eds.), Handbook on the Physics and Chemistry of Rare Earths, Volume 49
C.D.S. Brites, A. Millán, L.D. Carlos
2016, 339-427, Elsevier B.V..
ISBN:
978-0-444-63851-9
>